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a b s t r a c t

This work is concerned with the Lagrangian formulation of electromagnetic fields. Here,
the extended Euler–Lagrange differential equation for continuous, nondispersive media
is employed. The Lagrangian density for electromagnetic fields is extended to derive all
four Maxwell’s equations by means of electric and magnetic potentials. For the first time,
ohmic losses for time and space variant fields are included. Therefore, a dissipation density
function with time dependent and gradient dependent terms is developed. Both, the
Lagrangian density and the dissipation density functions obey the extended Euler–
Lagrange differential equation. Finally, two examples demonstrate the advantage of
describing interacting physical systems by a single Lagrangian density.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In 1788, Lagrange elegantly reformulated classical mechanics for conservative systems [1]. He reduced a large number of
interacting forces in a system to only two forms of energy: the kinetic energy and the potential energy. Instead of dealing
with vectors, only a scalar function must be considered. Furthermore, Lagrange’s formalism holds in any coordinate system.
These advantages initiated many works in mechanics and electronics using Lagrange’s formalism.

For instance, a Lagrangian formulation for continuous systems in mechanics is given in [2]. José and Saletan [3] cover the
Lagrangian formulation of continuum dynamics, and Scheck [4] treats discrete and continuous systems, the transition to a
continuous system and the Hamilton variational principle for a continuous system.

In his works, Süsse [5–9] approaches theoretical foundations of electrical engineering using classical Lagrange and Ham-
ilton formalisms, including losses. In [10,11] electrical lumped devices and electromechanical systems are described using
Lagrange and Hamilton formalism with and without losses, whereas the generalized motion in Riemannian space, i.e.
non-Euclidian, is considered. Further investigations on Lagrangians for lumped RLC-circuits are presented, for instance, in
[12–14], and nonlinear, lumped RLC networks are described in [15,16].

Lagrangian formulation in electrodynamics has to consider time and local variations. For example, Kosyakov [17] con-
structs Lagrangian densities for a lossless electromagnetic field and for particles moving in such a field, whereas he focuses
on developing Euler–Lagrange equations in tensor notation. Carroll [18] makes use of space–time reversed fields to construct
a Lagrangian including ohmic loss. However, losses for stationary fields, i.e. for the case o=ot ¼ 0, are not considered. Ter Haar
[19] not only treats the Lagrangian density for continuous media without losses, but also derives two Maxwell’s equations
. All rights reserved.
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from the Lagrangian density for an electromagnetic field. Simonyi [20] derives the same two Maxwell’s equations, namely
Gauss’ lawr � D ¼ .e and Ampère’s lawr�H ¼ oD

ot . However, a complete treatment with respect to deriving all of Maxwell’s
equations is lacking.

In the following, a Lagrangian density will be established for electromagnetic fields in order to derive all four Maxwell’s
equations. Additionally, ohmic losses are considered which leads to the extended Euler–Lagrange differential equation and a
dissipation density function. As a final point, two examples are presented which demonstrate that two interacting physical
systems can be described by a single, scalar Lagrangian density.

2. Euler–Lagrange differential equation and Lagrangian density

Lagrange formalism in electromagnetics means, representing electromagnetic fields by energy densities and obtaining a
Lagrangian density which obeys the so-called Euler–Lagrange differential equation. This differential equation fullfills the
principle of least action. In electrodynamics, the fields are not only time dependent but also space dependent. Hence, the
Euler–Lagrange differential equation for a continuous, lossless medium must be written as
Xm

k¼1

o

oxk

oL

o
ogi
oxk

� �
0
@

1
Aþ o

ot
oL

o
ogi
ot

� �
0
@

1
A� oL

ogi
¼Fi; ð1Þ
where there is one equation for each value of i, and where L is the Lagrangian density, Fi is the external force corresponding
to gi, which is a time and space dependent potential, xk are the system coordinates, and t is the time. The Lagrangian density,
a scalar function, is of the form
L ¼L gi;rgi;
ogi

ot

� �
i ¼ 1;2; . . . ; n: ð2Þ
Since the generalized forces Fi act only on gi, the forces can be successively decoupled and are therefore included in the
Lagrangian density as negative potential densities �giFi:
Xm

k¼1

o

oxk

oL

o
ogi
oxk

� �
0
@

1
Aþ o

ot
oL

o
ogi
ot

� �
0
@

1
A� oL

ogi
¼ 0; ð3Þ
with
L ¼L gi;giFi;rgi;
ogi

ot

� �
i ¼ 1;2; . . . ;n: ð4Þ
The task is to setup the Lagrangian density (4) for the electromagnetic field obeying the Euler–Lagrange differential Eq. (3).

2.1. Lagrangian density for the electromagnetic field

The Lagrangian density consists of two parts, the kinetic part and the potential part. For an electromagnetic field, the ki-
netic part is the energy density stored in the electric field and the potential part is the energy density stored in the magnetic
field. Energy densities in a linear electric field and a linear magnetic field are
we ¼
1
2

D � E and wm ¼
1
2

B �H; ð5Þ
respectively, where D ¼ eE is the electric displacement, E is the electric field, B ¼ lH is the magnetic flux density, and H is
the magnetic field. Electrical properties of the medium are described by the permittivity e and permeability l. For an elec-
tromagnetic field, the Lagrangian density in its contravariant form was discovered by Larmor [21] and is written as
L ¼ we �wm ¼
1
2

eE2 � 1
2
lH2: ð6Þ
The electric field E and magnetic field H can be expressed by potential functions u and A [22]. Therefore, the Lagrangian
density is conveniently written as
L ¼ 1
2

e ruþ oA
ot

� �2

� 1
2l
r� Að Þ2; ð7Þ
with
E ¼ �ru� oA
ot

ð8Þ

lH ¼ B ¼ r� A; ð9Þ
where u and A are the electric scalar potential and the magnetic vector potential, respectively.
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We can identify the potentials gi in Eq. (3) with g1 ¼ u, g2 ¼ Ax, g3 ¼ Ay and g4 ¼ Az, where x, y, and z are the Cartesian
coordinates. The sources for an electromagnetic field are the electric volume charge density �.e ¼F1 and the electric cur-
rent density vector Je0 with Je0;x ¼F2, Je0;y ¼F3, and Je0;z ¼F4. With these sources, the Lagrangian density in Eq. (7) can be
extended to
L ¼ 1
2

e ruþ oA
ot

� �2

� 1
2l r� Að Þ2 �u.e þ Je0 � A: ð10Þ
Now, it must be shown that the Lagrangian density given by Eq. (10) results in Maxwell’s equations. Substituting g1 ¼ u in
Eq. (3) and plugging L into the Euler–Lagrange differential Eq. (3) results in
oL

o
ou
ox

� � ¼ e
ou
ox
þ oAx

ot

� �
¼ �Dx

oL

o
ou
oy

� � ¼ e
ou
oy
þ oAy

ot

� �
¼ �Dy

oL

o
ou
oz

� � ¼ e
ou
oz
þ oAz

ot

� �
¼ �Dz ð11Þ

)
X3

k¼1

o

oxk

oL

o
ou
oxk

� � ¼ �r � D
o

ot
oL

o
ou
ot

� � ¼ 0

oL

ou
¼ �.e:
By inspection, this is Maxwell’s first equation, also called Gauss’ law:
r � D ¼ .e: ð12Þ
Further, substituting g2 ¼ Ax in Eq. (3) and plugging L into the Euler–Lagrange differential equation results in
o

ox
oL

o oAx
ox

� � ¼ 0

o

oy
oL

o oAx
oy

� � ¼ o

oy
1
l

oAy

ox
� oAx

oy

� �
¼ þ o

oy
Hz

o

oz
oL

o oAx
oz

� � ¼ o

oz
1
l

oAx

oz
� oAz

ox

� �
¼ � o
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Hy

o

ot
oL

o oAx
ot

� � ¼ o

ot
e
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ox
þ oAx

ot

� �
¼ � o

ot
Dx

oL

oAx
¼ Je0;x

ð13Þ
same for g3 ¼ Ay:
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ox
oL

o
oAy

ox

� � ¼ o

ox
1
l

oAy

ox
� oAx

oy

� �
¼ � o

ox
Hz

o

oy
oL
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oy
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1
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� �
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� �
¼ � o
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Dy
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oAy
¼ Je0;y

ð14Þ
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And likewise for g4 ¼ Az:
o

ox
oL

oðoAz
ox Þ
¼ o

ox
1
l

oAx

oz
� oAz

ox

� �
¼ þ o

ox
Hy

o

oy
oL

oðoAz
oy Þ
¼ o

oy
1
l

oAy

oz
� oAz

oy

� �
¼ � o

oy
Hx

o

oz
oL

o oAz
oz

� � ¼ 0

o

ot
oL

o oAz
ot

� � ¼ o

ot
e

ou
oz
þ oAz

ot

� �
¼ � o

ot
Dz

oL

oAz
¼ Je0;z

ð15Þ
Bringing all sets of Eqs. (13)–(15) into vector form and rearranging the terms, yields Maxwell’s second equation, also called
Ampère’s law:
r�H ¼ Je0 þ
oD
ot
: ð16Þ
As shown, only two of the four Maxwell’s equations can be derived by means of the Lagrangian density defined in Eq. (10). To
obtain the other two Maxwell’s equations the dual Lagrangian density is introduced.
2.2. Dual Lagrangian density for the electromagnetic field

Dirac [23] argued that there are magnetic monopoles, analogous to electric charges. Accepting the existence of magnetic
monopoles, would yield a symmetric set of Maxwell’s equations as presented, for instance, in [22]. As in [24,25], using the
duality theorem, the magnetic field and the electric displacement are now defined as
H ¼ �rum �
oAe

ot
; ð17Þ
and
D ¼ �r� Ae; ð18Þ
where um is the magnetic scalar potential and Ae is the electric vector potential. This leads to the dual Lagrangian density
Ld ¼
1
2
lH2 � 1

2
eE2

¼ 1
2
l rum þ

oAe

ot

� �2

� 1
2e
r� Aeð Þ2

ð19Þ
Assuming a magnetic volume charge density .m and a magnetic current density Jm0, the dual Lagrangian density can be ex-
tended to
Ld ¼
1
2
l rum þ

oAe

ot

� �2

� 1
2e
r� Aeð Þ2 �um.m � Jm0 � Ae: ð20Þ
In line with Section 2.1, it can be shown that the dual Lagrange density leads to the other two equations of Maxwell. Substi-
tuting g5 ¼ um in Eq. (3) and plugging Ld into the Euler–Lagrange differential Eq. (3), results in Maxwell’s third equation,
also called Gauss’ law for magnetization:
r � B ¼ .m: ð21Þ
Since magnetic monopoles have not been detected yet, the external force .m can be set to zero, and the conventional form
r � B ¼ 0 is obtained.

Furthermore, substituting g6 ¼ Ae;x, g7 ¼ A e;y, and g8 ¼ Ae;z in Eq. (3) and plugging Ld into the Euler–Lagrange differential
equation, leads to Maxwell’s fourth equation in vector form, also called Faraday’s law of induction:
r� E ¼ �Jm0 �
oB
ot
: ð22Þ
Again, when there is no magnetic current Jm0, the conventional form r� E ¼ � oB
ot is obtained.
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2.3. Total Lagrangian density

The sum of the Lagrangian density and the dual Lagrangian density is the total Lagrangian density LT. All four of Max-
well’s equations can be derived from this single, total Lagrangian density (23).
LT ¼
1
2

e ruþ oA
ot

� �2

þ l rum þ
oAe

ot

� �2
" #

� 1
2
ðr � AÞ2

l
þ ðr� AeÞ2

e

" #

�u.e þ Je0 � A�um.m � Jm0 � Ae

ð23Þ
3. Extended Euler–Lagrange differential equation: losses

Whenever a medium is present, losses are introduced. Therefore, a dissipation density function D has to be considered,
similar to the Lagrangian density. The Lagrangian density is an energy density whereas the dissipation density function is a
power density. The dissipation density function is the time average rate of energy dissipation per unit volume owh=ot, with
wh as the energy density dissipated in heat, and the energy dissipation due to EM-field variation in space. In the same way as
a potential w must satisfy the well-known three-dimensional wave equation
X3

k¼1

c2 o2w

ox2
k

� ow2

ot2 ¼ 0; ð24Þ
with c ¼ 1=
ffiffiffiffiffiffi
elp as the speed of light, the dissipation density function D has to satisfy
Xm

k¼1

oD

o c ogi
oxk

� �þ oD

o
ogi
ot

� � ¼ 0; ð25Þ
when there are no losses. However, considering losses, the right hand side of Eq. (25) is not equal to zero. Therefore, the Eu-
ler–Lagrange differential equation has to be extended with a generalized velocity dependent term oD=o ogi

ot

� �
and a gradient

dependent term 1
c

Pm
k¼1

oD
oðogi=oxkÞ

. Then, the extended Euler–Lagrange differential equation is written as
Xm

k¼1

o

oxk

oL

o
ogi
oxk

� �
0
@

1
Aþ o

ot
oL

o
ogi
ot

� �
0
@

1
Aþ 1

c

Xm

k¼1

oD

o
ogi
oxk

� �þ oD

o
ogi
ot

� �� oL

ogi
¼ 0: ð26Þ
It has to be mentioned that the external forces Fi can be included either as negative potential densities in the Lagrangian
density or as negative loss densities in the dissipation density function. The first case has been preferred in this work, as
shown in Sections 2.1 and 2.2.

3.1. Losses due to electric conductivity – the dissipation density function

In case of electric conductivity the losses are known as ohmic losses. In electromagnetics, Ohm’s law is defined as
J ¼ reE; ð27Þ
where J is the current density vector, re is the electric conductivity of the medium and E is the electric field causing charge
transport. Losses due to electric conductivity depend, as the electric field, onru and on oA=ot. Hence, the dissipation density
function, plugged into the Extended Euler–Lagrange differential Eq. (26), should yield the additive term given by (27) in Max-
well’s second equation. The ansatz to find D is
1
c

X3

k¼1

oD

o oAx
oxk

� �þ oD

o oAx
ot

� � ¼ re
ou
ox
þ oAx

ot

� �
ð28Þ

1
c

X3

k¼1

oD

o
oAy

oxk

� �þ oD

o
oAy

ot

� � ¼ re
ou
oy
þ oAy

ot

� �
ð29Þ

1
c

X3

k¼1

oD

o oAz
oxk

� �þ oD

o oAz
ot

� � ¼ re
ou
oz
þ oAz

ot

� �
ð30Þ

1
c

X3

k¼1

oD

o
ou
oxk

� �þ oD

o
ou
ot

� � ¼ 0: ð31Þ



C. Civelek, T.F. Bechteler / International Journal of Engineering Science 46 (2008) 1218–1227 1223
However, these partial differential equations are coupled with respect to the spatial derivatives ou=oxk. To decouple these
equations, the well-known Lorenz gauge
r � Aþ 1
c2

ou
ot
¼ 0; ð32Þ
is used. Hence, Eq. (31) can be rewritten as
1
c

X3

k¼1

oD

o
ou
oxk

� �þ oD

o
ou
ot

� � ¼ re r � Aþ
1
c2

ou
ot

� �
: ð33Þ
Integrating both sides with respect to spatial and time derivatives
1
c

oD

o ou
ox

� � ¼ re
oAx

ox
;

1
c

oD

o ou
oy

� � ¼ re
oAy

oy
;

1
c

oD

o
ou
oz

� � ¼ re
oAz

oz
;

oD

o
ou
ot

� � ¼ re

c2

ou
ot
;

correspondingly, leads to
Du ¼ cre
ou
ox

oAx

ox
þ ou

oy
oAy

oy
þ ou

oz
oAz

oz

	 

þ re

2c2

ou
ot

� �2

: ð34Þ
The dissipation density function given by Eq. (34) satisfies Eqs. (28)–(30) except for the terms reoAx=ot, reoAy=ot and
reoAz=ot. Plugging Du into these equations yields only reru. Integrating oD

oðoAi=otÞ ¼ re
oAi
ot on both sides, with i ¼ x; y; z, leads

to the time dependent term DA ¼ 1
2 re ðoAx=otÞ2 þ ðoAy=otÞ2 þ ðoAz=otÞ2

h i
. The complete dissipation density function is then

the sum of Du and DA:
D ¼ cre
ou
ox

oAx

ox
þ ou

oy
oAy

oy
þ ou

oz
oAz

oz

	 


þ 1
2

re

c2

ou
ot

� �2

þ 1
2
re

oAx

ot

� �2

þ oAy

ot

� �2

þ oAz

ot

� �2
" #

;

ð35Þ
which satisfies Eqs. (28)–(31). The first three terms of Eq. (35) are gradient dependent terms and describe losses due to local
field variations. The last four terms of Eq. (35) are time dependent terms and are analogous to the generalized velocity
dependent (Rayleigh) dissipation function
oD
o _q
¼ R _q ) D ¼ 1

2
R _q2
for lumped elements, as in [10–12], where R and _q are resistance and current, respectively.
3.2. Losses due to magnetic conductivity – the dual dissipation density function

Just as there is a dual Lagrangian density, there is a dual dissipation density function Dd. Similar to electric conductivity, a
magnetic conductivity rm can be defined [26]. Due to the magnetic field the magnetic conductivity causes a magnetic cur-
rent density
Jm ¼ rmH: ð36Þ
The dual dissipation density function can be established in the same manner as the dissipation density function in Section
3.1. It is given as
Dd ¼ crm
oum

ox
oAe;x

ox
þ oum

oy
oAe;y

oy
þ oum

oz
oAe;z

oz

	 

þ 1

2
rm

c2

oum

ot

� �2

þ 1
2
rm

oAe;x

ot

� �2

þ oAe;y

ot

� �2

þ oAe;z

ot

� �2
" #

; ð37Þ
with the Lorenz gauge
r � Ae þ
1
c2

oum

ot
¼ 0: ð38Þ
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3.3. Total dissipation density function

Analogous to the total Lagrangian density, the total dissipation density function is the sum of Eqs. (35) and (37):
DT ¼ DþDd: ð39Þ
Plugging LT and DT into the extended Euler–Lagrange differential equation yields all four of Maxwell’s equations, including
electric and magnetic losses in Maxwell’s second and fourth equations:
r� E ¼ �Jm0 � rmH� oB
ot

ð40Þ

r �H ¼ Je0 þ reEþ oD
ot
: ð41Þ
4. Examples

4.1. Lagrangian density for a non-relativistic, charged particle interacting with an EM-field

The Lagrangian density for interacting systems is the sum of the Lagrangian density for the first system, the Lagrangian
density for the second system and a Lagrangian density Li accounting for the interacting part [3,27]. In this example, a
charged particle of mass m and electric charge q moves in an electromagnetic field. By means of the Lagrangian density
and Euler–Lagrange differential equation, the equations of motions for the particle are obtained. The particle is described
by the Lagrangian density Lmass, and the electromagnetic field is described by the Lagrangian density LEM.
L ¼Lmass þLEM þLi: ð42Þ
In [5], for instance, this system has been described by a Lagrangian. To obtain the Lagrangian density, the Lagrangian in [5]
has to be derived with respect to volume V:
L ¼ oL
oV
¼ o3

ozoyox
1
2

mr
�2 � quþ q r

�
A

� �
; ð43Þ
with m, q, and r
�
¼ r
�
ðx; y; zÞ as the mass, charge and velocity vector of the particle, respectively. The potentials u and A de-

scribe the electromagnetic field. This results in the three terms of the Lagrangian density. The mass related part is
Lmass ¼
1
2

o3m
ozoyox

x
�2 þ y

�2 þ z
�2

� �
¼ 1

2
qMr

�2; ð44Þ
where qM is the specific mass of the particle. The part describing the electromagnetic field is
LEM ¼ �
o3q

ozoyox
u� o2q

oyox
ou
oz
� o2q

ozox
ou
oy
� o2q

ozoy
ou
ox
� oq

ox
o2u
ozoy

� oq
oy

o2u
ozox

� oq
oz

o2u
oyox

� q
o3u

ozoyox
; ð45Þ
where o3q=ozoyox is the electric volume charge density .e. The part of the Lagrangian density which accounts for the inter-
action is derived as
Li ¼ .e r
�
�A

� �
þ o

2q
oyox

r
� oA

oz

� �
þ o

2q
ozox

r
� oA

oy

� �
þ o

2q
ozoy

r
� oA

ox

� �
þ oq

ox
r
� o

2A
ozoy

 !
þ oq

oy
r
� o

2A
ozox

 !
þ oq

oz
r
� o

2A
oyox

 !
þ q r

� o
3A

ozoyox

 !
:

ð46Þ
Additionally assuming losses of the moving particle leads to the velocity dependent (Rayleigh) dissipation density
function
oD

o ri
� ¼

o3B

ozoyox
ri
�

) D ¼ 1
2

br
�2; ð47Þ
with B and b as friction and friction volume density, respectively, and ri
�

as the vector components of the velocity vector of
the particle. Substituting the generalized coordinates gi ¼ x; y; z; q; u; Ax; Ay; Az in the extended Euler–Lagrange Eq. (26)
yields the equations of motion for the particle in density form:
r
� o3A

ozoyox
� o3u

ozoyox
¼ 0; .e ¼ 0; .e r

�
¼ 0; ð48Þ
and
qM ri
��
¼ � o3

ozoyox
q

oAi

ot

� �
þ o3

ozoyox
q
X3

k¼1

rk
� oAk

ori

 !
� o3

ozoyox
q

ou
ori

� �
� b ri

�
; ð49Þ
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with i ¼ 1; 2; 3. Except for the losses b ri
�
, Eqs. (48) and (49) are analogous to the equations of motion as given, for instance,

in [5]. Integrating Eqs. (48) and (49) with respect to the volume o3=ozoyox yields
r
�

A�u ¼ 0; q ¼ 0; q r
�
¼ 0; ð50Þ
and
m r
��
¼ �q

oA
ot
þru

� �
þ q r� r� Að Þ½ � �B r

�
; ð51Þ
including losses due to friction, here called the dissipative Lorentz force.

4.2. Lagrangian density for an EM-field interacting with an elastic wave

In this second example, a stationary EM-field shall interact with an acoustic wave. The acoustic wave, which is an elastic
wave, causes spatial strain variations in the medium which in turn generates spatial permittivity variations [28]. Hence, the
EM-field is affected by this acoustic wave. The electromagnetic field is described by LEM and the acoustic field is described
by Lacoustic
L ¼LEM þLacoustic þLi: ð52Þ
A stationary EM-field with no x-component of the electric field is assumed, i.e. o=ot ¼ 0 and Ex ¼ 0. Therefore, its Lagrangian
density is
LEM ¼
1
2

eðruÞ2 � 1
2l
ðr � AÞ2 �u.e: ð53Þ
The acoustic wave is a longitudinal wave propagating in x-direction. Potential and kinetic energies for an acoustic wave
are given in [29] and, hence, the corresponding Lagrangian density is given as
Lacoustic ¼
1
2
B

on
ox

� �2

� 1
2
qM

on
ot

� �2

; ð54Þ
where

n is the longitudinal displacement of particles from their equilibrium position,
qM is the specific mass of particles, and
B is the adiabatic bulk modulus.

The strain S ¼ on=ox causes a spatial variation De of the medium’s permittivity. The permittivity is then eþ De. For small
variations in permittivity [28], the relation between De and S ¼ on=ox (tensor notation omitted) is
De ¼ �e2P
on
ox
; ð55Þ
with P as a dimensionless constant depending on the medium. This leads to the part of the Lagrangian density which ac-
counts for the interaction, written as
Li ¼ �
1
2

e2P
on
ox
ðruÞ2: ð56Þ
The Lagrangian density L ¼LEM þLacoustic þLi obeys the Euler–Lagrange differential Eq. (3) with g1 ¼ u, g2 ¼ Ax,
g3 ¼ Ay, g4 ¼ Az and g5 ¼ n. Substituting g1 ¼ u and plugging L into Eq. (3) results in
o

ox
oL

o
ou
ox

� � ¼ 0 since Ex ¼ 0) ou
ox
¼ 0

o

oy
oL

o
ou
oy

� � ¼ o

oy
e
ou
oy
� e2P

on
ox

ou
oy

� �
¼ �ðeþ DeÞ o

oy
Ey

o

oz
oL

o
ou
oz

� � ¼ o

oz
e
ou
oz
� e2P

on
ox

ou
oz

� �
¼ �ðeþ DeÞ o

oz
Ez

o

ot
oL

o
ou
ot

� � ¼ 0

oL

ou
¼ �.e

)r � D ¼ r � ðeþ DeÞE ¼ .e ð57Þ



1226 C. Civelek, T.F. Bechteler / International Journal of Engineering Science 46 (2008) 1218–1227
It is seen that the acoustic wave affects Maxwell’s first equation, i.e. Gauss’ law. A modulation of strain in the medium results
in a modulation of the electric field. Since Li does not include the vector potential A, the substitutions g2 ¼ Ax, g3 ¼ Ay and
g4 ¼ Az simply yield r�H ¼ 0, i.e. Ampère’s law for a stationary EM-field. Substituting g5 ¼ n and plugging L into Eq. (3)
results in
o

ox
oL

oðon
oxÞ
¼ o

ox
B

on
ox
� 1

2
e2PðruÞ2

� �
¼ o

ox
B

on
ox

o

oy
oL

oðon
oyÞ
¼ 0

o

oz
oL

oðon
ozÞ
¼ 0

o

ot
oL

oðon
otÞ
¼ � o

ot
qM

on
ot

oL

on
¼ 0

) o2n
ox2 �

qM

B

o2n

ot2 ¼ 0; ð58Þ
which is the wave equation for the acoustic wave, whereas the speed of this acoustic wave is defined as v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B=qM

p
. For

g5 ¼ n, the interacting part of the Lagrangian density Li does not contribute to Eq. (58), since Ex ¼ 0 and therefore
o
ox

1
2 e2PðruÞ2
� �

¼ 0.
In general, it is very hard to find the interacting part of the Lagrangian density. However, with this simple example it has

been demonstrated that it is possible to formulate fields of mixed type with a single Lagrangian density.

5. Conclusion

In this work, a Lagrangian density comprising electric and magnetic potentials has been developed. Furthermore, electric
(ohmic) and magnetic losses are described by a dissipation density function.

It is now possible to derive all four Maxwell’s equations in a straightforward way from a single, scalar Lagrangian density
function and a single, scalar dissipation density function. Both functions satisfy the extended Euler–Lagrange differential
equation.

The advantage of a Lagrangian formulation of time and space variant fields is not only its compactness but also the ability
to formulate fields of mixed type. For instance, a single Lagrangian can describe acousto-optic systems where EM-fields
interact with elastic waves.
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